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Abstract.  Optimal control of multimodal and singular problems of bioreactors has received 
considerable attention recently. Three main approaches have been attempted: deterministic 
methods like Iterative Dynamic Programming, stochastic methods like Adaptive Stochastic 
algorithms, and Evolutionary Algorithms.  The aim of this research is to demonstrate that new 
evolutionary algorithms called generically Differential Evolution (DE) algorithms are efficient 
in solving both multimodal, and singular optimal control problems especially when a relatively 
greater number of variables (50-100) have to be optimized. DE algorithms are simple and 
efficient evolutionary methods when are compared to other evolutionary methods regarding the 
number of function evaluations to converge to a solution. It is shown that besides he three main 
operators of DE: mutation, crossover and selection, a filter operator is added  in order to obtain 
smoother optimal trajectories of singular optimal control problems.  
 
1    Introduction 
 
During the last decade interest on the application of global optimization methods in 
optimal control has significantly increased. Evolutionary Algorithms are stochastic 
optimization methods that have shown several advantages as global optimization 
methods. They have been applied in the past basically to solve static optimization 
problems and only rarely to solve multimodal optimal control problems. It is well 
known that optimal control problems with singular arcs are very hard to solve by us-
ing the Pontryagin minimum principle [1], [2]. Singular optimal control problems are 
frequently found in the optimization of bioreactors [3], [4] and likely also in other 
biosystems [5]. Also multimodal optimal control problems are frequently found in op-
timization of bioreactors [6]. Luus [6,7] has applied Iterative Dynamic Programming 
(IDP), which can be considered as another global optimization method, to solve mul-
timodal and also singular control problems. Tholudur and Ramirez [8], who also used 
IDP, found highly oscillatory behavior of optimal control trajectories in solving sin-
gular optimal control problems. Therefore, they proposed two filters in order to calcu-
late smoother optimal trajectories. Recently, Roubos et al. [5] suggested two 
smoother evolutionary operators for a Genetic Algorithm with floating-point repre-
sentation of the individuals and applied this approach to calculate solutions for two 
fed-batch bioreactors. 
 
In spite of its reliability as a global optimization method, IDP is rather complex with 
several algorithm parameters, which require an expensive tuning, before the applica-
tion of the algorithm to a new problem. Since many experiments are necessary IDP 
becomes deceptively inefficient recalling that the computation time is critical in solv-
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ing optimal control problems. In dynamic optimization each evaluation of the cost 
function means running a long simulation (integration) of the dynamic model of the 
process. Theoretical and empirical results [9] have shown that Evolutionary Algo-
rithms (like those based in Genetic Algorithms) that use low mutation rates for muta-
tion and high probability for crossover are not good candidates to solve optimal con-
trol problems efficiently since they may require highly number of function 
evaluations when many variables are optimized or these variables are correlated. 
Therefore, there is a necessity of developing more efficient global optimization algo-
rithms for solving optimal control problems, in general, and multimodal and singular 
optimal control problems, in particular. 
 
Lately, a new family of evolutionary algorithms named Differential Evolution (DE) 
has been proposed [10, 11] which is not only simple but also remarkably efficient 
compared to other Evolutionary Algorithms, Simulated Annealing and Stochastic Dif-
ferential equations. Recently, results were have presented that show DE are one of the 
most efficient evolutionary algorithms to solve optimal control problems efficiently 
[12, 13]. The present work illustrates that indeed DE algorithms are good candidates 
to solve multimodal optimal control problems. Also modified DE algorithms are 
evaluated in solving singular optimal control problems. The new operator is simple 
and does not add any additional algorithm parameter. The so-called median filter op-
erator basically consists of a sliding window such as each control is replaced with the 
median of a few neighboring controls. The proposed operator is implemented on the 
DE/rand/bin/1 algorithm, and tested on solving a dynamic optimization problem of a 
fed-batch bioreactor. In this work efficiency of algorithms is measured by counting 
the number of function evaluations required to solve a problem, which is a machine 
independent criterion.  A comparison of the DE/rand/bin/1 algorithm performance 
with and without the smoother operator is presented to illustrate the advantages of the 
proposed modified Differential Evolution algorithm. 
 
2    The Optimal Control Problem 
 
A continuous-time optimal control problem [12] implies to find an optimal control 
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to follow an admissible trajectory  that optimizes the performance measure 
given by the functional : 
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where  denotes the states of the system and  denotes a control vector. 
In addition the controls are constrained α . The final time t  is fixed. As 
the Hamiltonian function:  
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is linear with respect to the controls, the optimal control problem becomes singular 
[13]. Singular optimal control problems are difficult to solve by classical methods and 
direct methods seem to be a promising approach. To apply a direct optimization 
method a parameterization of the controls is necessary, for instance piecewise con-
stant control can be applied 

)()( ktutu = , ,  ),[ 1+∈ kk ttt 1,...1,0 −= Nk (4) 

 
where N is the number of sub-intervals for the time interval [ . In this way a vec-

tor of parameters u is defined and the value that optimizes the 
original performance index (2) can be obtained by parameter optimization methods or 
solving a Non-Linear Programming (NLP) optimization problem. The numerical solu-
tion of these problems is challenging due to the non-linear and discontinuous dynam-
ics. Likely, there is not a unique global solution. Standard gradient-based algorithms 
are basically local search methods; they will converge to a local solution. In order to 
surmount these difficulties global optimization methods must be used in order to en-
sure proper convergence to the global optimum. 
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 3   Differential Evolution Algorithms 
 
A differential evolution algorithm is as follows: 
Generate a population ( ) of solutions. )0(P
Evaluate each solution.  
g=1; 
while (convergence is not reached) 

µ     for i=1 to  
 Apply differential mutation. 
 Execute differential crossover. 

Clip the new solution if necessary. 
Evaluate the new solution. 
Apply differential selection. 

     end 
     g=g+1; 
end 
Firstly, a population  of floating-point vectors u  is generated ran-
domly from the domain of the variables to be optimized, where u  and  
denotes the population size. Next, each vector is evaluated by calculating its associ-
ated cost function (eqn. 2), i . Notice that the evaluation of each solution im-
plies to carry out a numerical integration of the dynamic model (1). After that, a loop 
begins in which the evolutionary operators: differential mutation, differential cross-
over and selection are applied to the population ( ), where  denotes a genera-
tion number. Differential Evolution operators are quite different than those frequently 
found in other evolutionary algorithms. In DE, the differential mutation operator con-
sists of the generation of  mutated vectors according to the equation: 
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where the random indices  are mutually different and also different 
from the index i.  is a real constant parameter that affects the differential 
variation between two vectors. Greater values of and/or the population size ( ) 
tend to increase the global search capabilities of the algorithm because more areas of 
the search space are explored. 
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The crossover operator combines the previously mutated vector  
with a so-called target vector (a parent solution from the old population) 

 to generate a so-called trial vector  according 
to: 
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where  is the j-th evaluation of a uniform random number generator, 

 is a randomly chosen index. CR  is the crossover constant, a 
parameter that increases the diversity of the individuals in the population. Greater 
values of CR give rise to a child vector ( ) more similar to the mutated vector ( ). 
Therefore, the speed of convergence of the algorithm is increased. As can be seen 
from equation (6), each member of the population plays once the role of a target vec-
tor. It is important to realize that even when CR , equation (6) ensures that parent 
and child vectors differ by at least one gene (variable). The three algorithm parame-
ters that steer the search of the algorithm, the population size ( ), the crossover con-
stant ( ) and differential variation factor ( ) remain constant during an optimiza-
tion.  
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The selection operator compares the cost function value of the target vector  with 
that of the associated trial vector ,  and the best vector of these two be-
comes a member of the population for the next generation. That is, 
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Several DE algorithms can be identified according to their type of mutation ( ), 
number of difference vectors ( ) and type of crossover ( ).  Commonly, the nota-
tion  is used to name a DE algorithm. Where , means the way the vec-
tor to be mutated is chosen,  indicates the number of difference vectors is used, 
and  is the type of differential crossover implemented. For instance, the previously 
described algorithm is known as the , which means than the to be 
mutated vector is selected randomly, only one difference vector is calculated and the 
scheme of crossover is binomial. In general , 
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Extensions of DE and a smoother operator 
 
Since originally DE algorithms were designed to solve unconstrained static optimiza-
tion problems, a modification is required in order to deal with constraints for the con-
trols. A clipping technique has been introduced to guarantee that only feasible trial 
vectors are generated after the mutation and crossover operators: 
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where  and  represent the lower and upper boundaries of the control variables, 
respectively. A smoother operator is defined according to [8] as follows: 
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where  is the filtering radius. Both Differential Evolution algorithms and its 
extensions were programmed as an m-file in the Matlab environment.  
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 4   Multimodal Optimal Control of Bifunctional Catalyst Blend 
 
A chemical process converting methylcyclopentane to benzene in a tubular reactor is 
modeled by a set of seven differential equations:  
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where  are the mole fractions of the chemical species, and the rate con-
stants ( ) are cubic functions of the catalyst blend : 
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The values of the coefficients are given in [7]. The upper and lower bounds on the 

mass fraction of the hydrogenation catalyst are: , and the initial vector 
ijc
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of mole fraction is . This is a continuous process op-
erated in steady state, so that ‘time’ in equations (9)-(16) is equivalent to travel time 
and thus length along the reactor. The optimal control problem is to find the catalyst 
blend along the length of the reactor, which in the control problem formulation is con-
sidered at times  where the final effective residence time 

 such that the concentration in the reactor is maximized: 

. Esposito and Floudas [16] found recently 300 local minima of this 
problem, so this is a challenging multimodal optimal control problem. 
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5   Singular Optimal Control of the Park-Ramirez Bioreactor 
 
One optimal control problem that has a singular optimal solution was used to test the 
modified DE algorithm [8]. In this problem the goal is to maximize the production of 
protein. The system is described by the following differential equations: 
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The state variable  represents amount of secreted protein [unit culture volume L-1], 

 denotes the total protein amount [unit culture volume L-1],  means culture cell 
density [g L

3x

5x-1],  culture glucose concentration [g L-1], and  the culture volume 
[L]. The control u  represents the rate at which glucose is fed into the reactor [Lh-

1]. The secretion rate constant is given by , the protein expression rate is calculated 
by , the specific growth rate by  and the biomass to glucose yield is estimated 
by . The optimal control problem consists in the maximization of the amount of 
the secreted protein in a given time t . Therefore the performance index is 

given by . The control input satisfying the constraints  
and the system initial conditions are . The dynamic model 
(eqns. 10-14) was programmed in the Matlab-Simulink environment. A C-MEX file 
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containing the dynamic equations was implemented in order to speed up the simula-
tions. A variable step size Runge-Kutta integration method with a relative tolerance of 

 was applied.  The DE algorithm was initialized randomly from the control’s 
domain. Since DE algorithms are probabilistic methods the optimizations were re-
peated 10 times. The problem was solved for two number of variables N=50 and  
N=100. 
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6   Results and Discussion 
 
Multimodal optimal control problem 
Ten differential evolution algorithms were evaluated in solving the multimodal opti-
mal control problem aforementioned. Table 1 shows main  results. NP is the popula-
tion size used in each algorithm. 

Table 1. Evaluation of several DE algorithms in solving a multimodal continuous-time optimal 
control problem 

DE CR F NP Kp F.E. STD J* STD 
binbest /2//  0.0 0.9 15 - 2529 262.98 10.0942 0.0 
exp/2/best  0.0 0.9 20 - 3426 388.85 10.0942 0.0 
exp/1/rand  0.0 0.9 15 - 2289 295.31 10.0942 0.0 
binrand /1//  0.0 0.9 20 - 3044 351.22 10.0942 4e-5 
binrand /2//  0.0 0.9 20 - 3872 332.69 10.0942 4e-5 
exp/2/rand  0.0 0.9 20 - 3882 440.44 10.0942 0.0 

binrandtocurr /1/−−  0.0 0.9 15 1 2100 346.04 10.0942 5e-5 
exp/1/randtocurr −−  0.0 0.9 15 1 2257 202.63 10.0942 0.0 

binbest /1//  0.0 0.9 25 - 3112 324.30 10.0942 0.0 
exp/1/best  0.0 1.0 25 - 3245 413.11 10.0941 2e-4 

 
Results of table 1 represent the average of 10 runs regarding number of function 
evaluations (FE) and the objective function (J*). A measure of population conver-
gence was defined as a difference between worst and best solution satisfied a given 
value. In this case the accuracy required was 1e-3. Clearly all DE algorithms found 
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the global optimum with the given values of the parameters. Notice that because of 
the high multimodality of the problem the mutation parameter is greater and in some 
cases the population size was increased more than two times the size of the number of 
variables to be optimized. Price [11], suggests populations sizes between and  
but our results show that even with lower sizes DE algorithms can solve multimodal 
optimal control problems. Figure 1 shows the optimal control trajectory found by DE 
algorithms. 

n2 n20

 
Singular optimal control of Park-Ramirez bioreactor 
Since DE algorithms are very robust it is easy to determine a set of parameters that 
provides an acceptable solution. Furthermore, the solved optimal control problem has 
likely only one solution so it was found that an almost standard setting worked out 
properly. In contrast to the commonly applied approach, which is based on the use of 
a too large population size, in our situation population size was chosen equal to the 
dimension of the optimization (N) problem. Since we did not expect a multimodal 
problem then the mutation constant was kept reasonably small. However, the cross-
over parameter was substantially increased in order to speed up the convergence of 
the algorithms. Table 2 and table 3 show the parameters settings (crossover constant, 
mutation parameter and population size) of  applied on optimal con-
trol problem using the Park-Ramirez bioreactor. Also the main results of the compari-
son regarding number of generations required, the number of function evaluations 
needed and the cost function value are presented. 

binrandDE /1//

Table 2. Results obtained by DE and smoother DE in solving a singular optimal control 
problem (Number of variables N=50) 

 CR F µ  Generations Function Evaluations J* 

DE 0.9 0.6 50 5192 259600 32.41 
SDE 0.9 0.6 50 932 46600 32.41 

Table 3. Results obtained by DE and smoother DE in solving a singular optimal control 
problem (Number of variables N=100). 

 CR F µ  Generations Function Evaluations J* 

DE 0.9 0.6 100 8251 825100 32.47 
SDE 0.9 0.6 100 436 43600 32.47 
Figure 2 and figure 3  show the optimal control trajectories calculated by both the DE 
and the smoother DE algorithms for N=50 and N=100 number of variables. In both 
cases the trajectories resulted on the same cost function value. Clearly, the trajectory 
generated by DE algorithm with a smoother operator has less oscillation than that ob-
tained by DE.  The oscillation of optimal control trajectory obtained by DE was as the 
control was parameterized more variables (N=100). A comparison of figures 2 and 3 
makes apparent that only small differences can be distinguished between the optimal 
control trajectories calculated by the smother DE algorithm.  The performance index 
values obtained for both situations N=50 and N=100 were exactly the same reported 
by [8] using Iterative Dynamic Programming. The improvement in efficiency accord-
ing to the number of function evaluations as N=50 is used was 6 % in case of N=100 
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this was 19%.   Similar percentages were obtained taking into consideration the num-
ber of generations. The explanation of this fact could be the increment of population 
size to  individuals as N=100.  But also it is clear that avoiding the oscillation 
of the optimal trajectories speed up the convergence of the DE algorithm. Therefore, 
it is clear that using the smoother operator together with other DE operators, the per-
formance of DE algorithms is improved considerably and also higher oscillation of 
optimal control trajectories can be avoided. 

100=µ

Figure 2. Optimal control trajectory of DE without and 
with smoother operator (N=50). 

  
7   Conclusions 
 
A highly multimodal optimal control problem was used to test the performance of 
several differential evolution algorithms. Results show that DE algorithms are good 
candidates to solve this class of problems since even using small populations they can 
find the global optimum trajectory. DE algorithms are robust and their parameters are 
chosen in a straightforward way.  A smoother operator was proposed and evaluated in 
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Figure 3. Optimal control trajectory without and 
with smoother operator N=100. 
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solving singular optimal control problems by Differential Evolution algorithms. The 
evaluation of the smoother operator on a dynamic optimization problem of a nonlin-
ear bioreactor showed that the operator not only removed the oscillation of the opti-
mal control trajectory, but also it speed up the convergence of the of a DE algorithm.  
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